Electronic Theses and Dissertations
Identifier
809
Date
2013
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Biomedical Engineering
Committee Chair
Amy L. de Jongh Curry
Committee Member
Jack W. Buchanan
Committee Member
Bashir I. Morshed
Abstract
The goal of this dissertation is to document functional reorganization in rat primary somatosensory (SI) cortex. This work proposes to strengthen the interhemispheric connection between homotopic sites in forelimb barrel cortex (FBC) through intracortical microstimulation (ICMS) and induce functional reorganization whereby neurons in the FBC respond to new input from the ipsilateral forelimb. Furthermore, a wireless microstimulation and recording device was developed for producing enhancement and functional reorganization of cortical circuits in FBC. The goal of Experiment One was to test the hypothesis that layer V neurons projected to homotopic sites in contralateral layer V FBC. Retrograde or anterograde neuronal tracer injections were made to characterize the distribution of callosal projecting neurons in contralateral SI that terminate in layer VFBC and where layer V callosal projecting neurons terminate in contralateral SI. The results showed a differential pattern of interhemispheric connectivity between homotopic forelimb representations in layer V FBC. The goal of Experiment Two was to test the hypothesis that ICMS enhances the interhemispheric pathway and leads to functional reorganization. ICMS was delivered in vivo to the interhemispheric pathway between homotopic layer V barrel cortices and multiunit recordings were made to assess changes in firing rate. The results showed ICMS strengthens interhemispheric connectivity and leads to functional reorganization in rat FBC. The goal of Experiment Three was to develop an interactive telemetry-based neural interface device for the controlled delivery of ICMS and recording response activity in rodent. The device successfully delivered microstimulation to a single electrode in SIand recorded evoked responses from a separate electrode in contralateral SI. Its performance was shown to be comparable to commercial stimulating and recording systems. This system serves as a prototype of a wearable compact device. The data suggest that neurons in rat FBC can be induced to respond to new input from the ipsilateral forelimb by enhancing the interhemispheric pathway with ICMS. An interactive system for the controlled delivery of telemetry-based microstimulation and real-time recordings has been demonstrated in vivo. These studies provide the framework for subsequent studies of interhemispheric pathway enhancement and functional reorganization in freely moving rats.
Library Comment
Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.
Recommended Citation
DeCosta-Fortune, Tina Marie, "Telemetry Controlled Brain Machine Interface To Train Cortical Circuits" (2013). Electronic Theses and Dissertations. 672.
https://digitalcommons.memphis.edu/etd/672
Comments
Data is provided by the student.