Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: Geometry for a vascular matrix

Abstract

Extracellular matrices are arranged with a specific geometry based on tissue type and mechanical stimulus. For blood vessels in the body, preferential alignment of fibers is in the direction of repetitive force. Electrospinning is a controllable process which can result in fiber alignment and randomization depending on the parameters utilized. In this study, arterial grafts composed of polycaprolactone (PCL), polydioxanone (PDO) and silk fibroin in blends of 100:0 and 50:50 for both PCL:silk and PDO:silk were investigated to determine if fibers could be controllably aligned using a mandrel rotational speed ranging from 500 to 8000 revolutions per minute (RPM). Results revealed that large- and small-diameter mandrels produced different degrees of fiber alignment based on a fast Fourier transform of scanning electron microscope images. Uniaxial tensile testing further demonstrated scaffold anisotropy through changes in peak stress, modulus and strain at break at mandrel rotational speeds of 500 and 8000 RPM, causing peak stress and modulus for PCL to increase 5- and 4.5-fold, respectively, as rotational speed increased. Additional mechanical testing was performed on grafts using dynamic compliance, burst strength and longitudinal strength displaying that grafts electrospun at higher rotational rates produced stiffer conduits which had lower compliance and higher burst strength compared to the lower mandrel rotational rate. Scaffold properties were found to depend on several parameters in the electrospinning process: mandrel rotational rate, polymer type, and mandrel size. Vascular scaffold design under anisotropic conditions provided interesting insights and warrants further investigation. © 2009 IOP Publishing Ltd.

Publication Title

Biomedical Materials

Share

COinS