Phosphatidylcholine Coatings Deliver Local Antimicrobials and Reduce Infection in a Murine Model: A Preliminary Study

Abstract

Background: Phosphatidylcholine coatings have been shown to elute antibiotics for several days. A recently developed biofilm inhibitor, cis-2-decenoic acid (C2DA), has been shown to exhibit synergistic activity with several common antibiotics. This study aims to evaluate the effectiveness of C2DA and amikacin dual drug delivery from a phosphatidylcholine coating. Questions/purposes: (1) What are the in vitro elution profiles of amikacin and C2DA from phosphatidylcholine-coated coupons in incubated phosphate-buffered saline? (2) Does the presence of C2DA in eluate samples lower the amount of amikacin needed for bacterial inhibition in overnight bacterial turbidity assays? (3) Does addition of amikacin and C2DA result in decreased colony-forming units (CFUs) on wire implants and bone when compared with phosphatidylcholine coatings alone in a mouse model of periprosthetic joint infection? Methods: Effects of loading concentrations were assessed during 7-day in vitro elution studies for coatings containing all mixtures of 0%, 5%, 15%, and 25% wt of amikacin and C2DA (n = 4) through quantitative high-performance liquid chromatography concentration determination and plotting concentration eluted over time. Antimicrobial activity was assessed by overnight turbidity testing of elution study samples against Staphylococcus aureus or Pseudomonas aeruginosa. In vivo efficacy was assessed using phosphatidylcholine-coated wire implants in a murine (mouse) model of infection (n = 3). Wire implants were coated with phosphatidylcholine containing no antimicrobials, amikacin alone, C2DA alone, or amikacin and C2DA and then inserted into the intramedullary femur of each mouse and inoculated with S aureus. The number of viable bacterial colonies on the implant surface and in the surrounding bone was determined after 1 week with the goal of achieving complete bacterial clearance. Total viable CFU count and proportion of samples achieving complete clearance were compared between groups. Results: Elution samples showed a burst response of amikacin and C2DA for 1 to 2 days with C2DA release continuing at low levels through Day 4. All tested eluate samples inhibited P aeruginosa. Samples from coatings containing 25% amikacin or 15% amikacin and any amount of C2DA were able to inhibit S aureus formation, but all coatings with 5% amikacin or 15% amikacin but no C2DA were not inhibitory. All in vivo treatment groups achieved complete bacterial clearance on the wire implant, and the C2DA alone and amikacin alone coatings cleared all CFUs in bone (pin: phosphatidylcholine only one of three; amikacin three of three, C2DA three of three, amikacin + C2DA three of three, p = 0.04 [Fisher’s exact test]; bone: coating only: zero of three; amikacin: three of three; C2DA; three of three; C2DA + amikacin: one of three; p = 0.03 [Fisher’s exact test]). Conclusions: Phosphatidylcholine coatings elute antimicrobials in vitro under infinite sink conditions for up to 4 days in phosphate-buffered saline and were able to reduce bacterial colonies in a preliminary in vivo model. Turbidity testing with eluate samples containing varying amounts of C2DA and amikacin agrees with previous studies showing synergy between them. Clinical Relevance: Used as an adjunctive to systemic therapy, C2DA-loaded phosphatidylcholine coatings have potential value as a prophylactic infection prevention measure. Future studies may include different antibiotics, animal studies with larger sample sizes and more controls, and advanced coating delivery methods.

Publication Title

Clinical Orthopaedics and Related Research

Share

COinS