Qualitative and quantitative measurement of the anterior and posterior meniscal root attachments of the New Zealand white rabbit

Abstract

Background: The purpose of this study was to quantify the meniscal root anatomy of the New Zealand white rabbit to better understand this animal model for future in vitro and in vivo joint degeneration studies. Methods: Ten non-paired fresh frozen New Zealand white rabbit knee stifle joints were carefully disarticulated for this study. Measurements were made for all bony landmarks and ligamentous structure attachment sites on the tibial plateau. The following soft tissue structures were consistently identified in the rabbit stifle joint: the anterior root attachment of the lateral meniscus, the anterior root attachment of the medial meniscus, the anterior cruciate ligament, the posterior root attachment of the medial meniscus, the ligament of Wrisberg, the posterior cruciate ligament, and the posterior meniscotibial ligament. The following bony landmarks were consistently identified: the extensor digitorum longus groove, the medial tibial eminence, the center of the tibial tuberosity, and the lateral tibial eminence. Results: The center of the anterior cruciate ligament and the medial tibial eminence apex were found to be 3.4 ± 0.3 mm (2.9–3.6) and 6.1 ± 0.6 mm (5.1–7.0) respectively from the center of the medical anterior root attachment. The center of the anterior cruciate ligament and the lateral tibial eminence apex were found to be 2.1 ± 0.5 mm (1.2–2.7) and 7.0 ± 0.6 mm (6.4–8.2) respectively from the center of the lateral anterior root attachment. The center of the posterior cruciate ligament and the medial tibial eminence apex were found to be 2.0 ± 0.7 mm (0.5–2.6) and 1.8 ± 0.4 mm (1.2–2.4) respectively from the center of the medial posterior root attachment. Conclusions: This study augments our understanding of the comparative anatomy of the rabbit stifle joint. This information will be useful for future biomechanical, surgical, and in vitro studies utilizing the rabbit stifle as a model for human knee joint degenerative diseases.

Publication Title

Journal of Experimental Orthopaedics

Share

COinS