A tool for measuring and visualizing connectivity of transit stop, route and transfer center in a multimodal transportation network

Abstract

Agencies at the federal, state and local level are aiming to enhance the public transportation system (PTS) as one alternative to alleviate congestion and to cater to the needs of captive riders. To effectively act as a viable alternative transportation mode, the system must be highly efficient. One way to measure efficiency of the PTS is connectivity. In a multimodal transportation system, transit is a key component. Transit connectivity is relatively complex to calculate, as one has to consider fares, schedule, capacity, frequency and other features of the system at large. Thus, assessing transit connectivity requires a systematic approach using many diverse parameters involved in real-world service provision. In this paper, we use a graph theoretic approach to evaluate transit connectivity at various levels of service and for various components of transit, such as nodes, lines, and transfer centers in a multimodal transportation system. Further, we provide a platform for computing connectivity over large-scale applications, using visualization to communicate results in the context of their geography and to facilitate public transit decision-making. The proposed framework is then applied to a comprehensive transit network in the Washington-Baltimore region. Underpinning the visualization, we introduce a novel spatial data architecture and Web-based interface designed with free and open source libraries and crowd-sourced contextual data, accessible on various platforms such as mobile phones, tablets and personal computers. The proposed methodology is a useful tool for both riders and decision-makers in assessing transit connectivity in a multimodal transit network in a number of ways such as the identification of under-served transit areas, prioritization and allocation of funds to locations for improving transit service.

Publication Title

Public Transport

Share

COinS