Analysis of passenger-car crash injury severity in different work zone configurations

Abstract

Work zone safety remains a priority to the Federal Highway Administration, State Highway Departments, highway engineers, and the traveling public. Work zones create a hospitable environment for crashes; an issue that gained tremendous share of attention in recent years. Therefore, every effort should be sought out to reduce the injury severity of crashes in work zones. In this paper we attempt to investigate factors contributing to the injury severity of passenger-car crashes in different work zone configurations. Considering the discrete ordinal nature of injury severity categories, a Mixed Generalized Ordered Response Probit (MGORP) modeling framework was developed. The model estimation was undertaken by compiling a database consisting of 10 years of crashes that involved at least one passenger car, and occurred in a work zone. Revealing the underlying factors contributing to injury severity levels for different work zone configurations will allow for distinguishing mitigation methods for higher severity outcomes that best suit each of the depicted work zone layouts. This can be accomplished through the implementation of specific safety measures based on the specific configuration of a work zone as a potential crash location. Elasticity analysis suggests that partial control of access, roadways classified as rural, crashes during evening times, crashes during weekends, and curved roadways are key factors that increase the likelihood of severe outcomes. Also, the effects of several covariates were found to vary across the different work zone configurations.

Publication Title

Accident Analysis and Prevention

Share

COinS