Impacts of stratigraphic heterogeneity and release pathway on the transport of bacterial cells in porous media
Abstract
In order to manage and control the pathogen release from waste streams of various municipal, industrial, and agricultural pollution sources, it is crucial to investigate the impact of release pathways of such contaminants on their fate and transport in groundwater, especially in respect to natural heterogeneities encountered in aquifers. In this laboratory scale study, we investigate the impacts of different release scenarios of Escherichia coli bacteria, including spatially distributed surface recharge and single-point deep injection, as well as mono-pulse and continuous injection on the transport of Escherichia coli within both single-layered and multilayer aquifers. The results demonstrate earlier arrival of bacteria breakthrough curve (BTC) than conservative solute within a single-layer system with textural and continuum scale heterogeneities, attributed to size exclusion mechanism and preferential flow paths. Size exclusion may be responsible for multiple peaked BTCs observed in all cases of mono-pulse injection of bacteria through both single layer and multi-layer systems. The higher breakthrough of bacteria suspension introduced through a distributed source compared to the point source injection at the same flow rate (19% and 53% in middle and top layers, respectively) suggests that natural hydrologic events such as storm may be more influential in the transport of pathogens in soils than point injections of bacteria in engineering applications such as bioremediation. Moreover, our results reveal that the concentration of the semi-steady state breakthrough formed under distributed and continuous injection condition increases significantly with an increase in the recharge flow rate. This would suggest that a variation in hydrologic conditions can significantly mobilize pathogens which are already deposited in soils.
Publication Title
Science of the Total Environment
Recommended Citation
Mahmoudi, D., Rezaei, M., Ashjari, J., Salehghamari, E., Jazaei, F., & Babakhani, P. (2020). Impacts of stratigraphic heterogeneity and release pathway on the transport of bacterial cells in porous media. Science of the Total Environment, 729 https://doi.org/10.1016/j.scitotenv.2020.138804