Equation based new methods for residential load forecasting

Abstract

This work proposes two non-linear and one linear equation-based system for residential load forecasting considering heating degree days, cooling degree days, occupancy, and day type, which are applicable to any residential building with small sets of smart meter data. The coefficients of the proposed nonlinear and linear equations are tuned by particle swarm optimization (PSO) and the multiple linear regression method, respectively. For the purpose of comparison, a subtractive clustering based adaptive neuro fuzzy inference system (ANFIS), random forests, gradient boosting trees, and long-term short memory neural network, conventional and modified support vector regression methods were considered. Simulations have been performed in MATLAB environment, and all the methods were tested with randomly chosen 30 days data of a residential building in Memphis City for energy consumption prediction. The absolute average error, root mean square error, and mean average percentage errors are tabulated and considered as performance indices. The efficacy of the proposed systems for residential load forecasting over the other systems have been validated by both simulation results and performance indices, which indicate that the proposed equation-based systems have the lowest absolute average errors, root mean square errors, and mean average percentage errors compared to the other methods. In addition, the proposed systems can be easily practically implemented.

Publication Title

Energies

Share

COinS