Off-axis digital holographic microscopy: Practical design parameters for operating at diffraction limit

Abstract

The utilization of microscope objectives (MOs) in digital holographic microscopy (DHM) has associated effects that are not present in conventional optical microscopy. The remaining phase curvature, which can ruin the quantitative phase imaging, is the most evident and analyzed. As phase imaging is considered, this interest has made possible the development of different methods of overcoming its undesired consequences. Additionally to the effects in phase imaging, there exist a set of less obvious conditions that have to be accounted for as MOs are utilized in DHM to achieve diffraction-limit operation. These conditions have to be considered even in the case in which only amplitude or intensity imaging is of interest. In this paper, a thorough analysis of the physical parameters that control the appropriate utilization of MOs in DHM is presented. A regular DHM system is theoretically modeled on the basis of the imaging theory. The Fourier spectrum of the recorded hologram is analyzed to evaluate the performance of the DHM. A set of the criteria that consider the microscope features and the recording parameters to achieve DHM operation at the diffraction limit is derived. Numerical modeling and experimental results are shown to validate our findings.

Publication Title

Applied Optics

Share

COinS