Reduction in data acquisition for resolution improvement in structured illumination digital holographic microscopy

Abstract

Over the last years structured illumination digital holographic microscopy (SI-DHM) has been experimentally proved to double the resolution limit in conventional DHM. In SI-DHM, the underlying specimen is illuminated using a spatially varying structured illumination (SI) pattern, which enables super-resolution (SR) images to be retrieved using the proper computational reconstruction process. All these reconstruction methods require the acquisition of at least a couple phase-shifted DHM images. In particular, for a pure sinusoidal pattern, there is a need of recording two phase-shifted DHM images per orientation of the pattern (e.g., 6 images per isotropic SR improvement). Taking advantage of the simultaneous recording of the virtual (e.g., conjugated) image in the raw DHM image, here we present a novel computational method to reconstruct an isotropic SR image using one acquisition per pattern's orientation (e.g. total 3 images per isotropic improvement). Because our proposed method shows a 50% reduction in the data acquisition and, therefore, acquisition time, we believe that our method should increase the utility of SI-DHM in live-cell imaging. We have validated our method using simulated and results.

Publication Title

Proceedings of SPIE - The International Society for Optical Engineering

Share

COinS