Illuminating subduction zone rheological properties in the wake of a giant earthquake
Abstract
Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 Mw 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle.
Publication Title
Science Advances
Recommended Citation
Weiss, J., Qiu, Q., Barbot, S., Wright, T., Foster, J., Saunders, A., Brooks, B., & Bevis, M. (2019). Illuminating subduction zone rheological properties in the wake of a giant earthquake. Science Advances, 5 (12) https://doi.org/10.1126/sciadv.aax6720