Solidification characteristics of wrought magnesium alloys containing rare earth metals

Abstract

A significant barrier preventing use of magnesium sheet in automotive light-weighting initiatives is its high manufacturing cost and very limited formability at room temperature. This barrier can be overcome by the use of twin roll casting technology and new magnesium alloys, specifically designed for twin roll casting. Recent studies have shown that magnesium, when alloyed with rare earth elements, gave rise to weakening of the basal texture resulting in improved room temperature formability. In this research, a combination of calculations using the FACTsage software and examinations using a number of experimental techniques was explored to determine the solidification characteristics of wrought magnesium alloys containing rare earth metal of neodymium: ZEK100, Mg-lZn-0.5Nd and Mg-lZn-lNd. As predicted by the FACTsage software, the solidification under equilibrium and non-equilibrium conditions affects the type and volume fractions of phases formed for a given chemical composition of the alloy. The thermal analysis identified temperatures of metallurgical reactions taking place during solidification and their changes with neodymium content. As verified by controlled solidification experiments the cooling rate during solidification affected the refinement level of the alloy microstructure, a volume fraction of intermetallic precipitates and their distribution. This research will help to design new magnesium alloys, specifically optimized for twin roll casting.

Publication Title

Magnesium Technology

Share

COinS