Bilinguals at the "cocktail party": Dissociable neural activity in auditory-linguistic brain regions reveals neurobiological basis for nonnative listeners' speech-in-noise recognition deficits

Abstract

We examined a consistent deficit observed in bilinguals: poorer speech-in-noise (SIN) comprehension for their nonnative language. We recorded neuroelectric mismatch potentials in mono- and bi-lingual listeners in response to contrastive speech sounds in noise. Behaviorally, late bilinguals required ~10. dB more favorable signal-to-noise ratios to match monolinguals' SIN abilities. Source analysis of cortical activity demonstrated monotonic increase in response latency with noise in superior temporal gyrus (STG) for both groups, suggesting parallel degradation of speech representations in auditory cortex. Contrastively, we found differential speech encoding between groups within inferior frontal gyrus (IFG)-adjacent to Broca's area-where noise delays observed in nonnative listeners were offset in monolinguals. Notably, brain-behavior correspondences double dissociated between language groups: STG activation predicted bilinguals' SIN, whereas IFG activation predicted monolinguals' performance. We infer higher-order brain areas act compensatorily to enhance impoverished sensory representations but only when degraded speech recruits linguistic brain mechanisms downstream from initial auditory-sensory inputs.

Publication Title

Brain and Language

Share

COinS