Brainstem pitch representation in native speakers of Mandarin is less susceptible to degradation of stimulus temporal regularity

Abstract

It has been demonstrated that neural encoding of pitch in the auditory brainstem is shaped by long-term experience with language. To date, however, all stimuli have exhibited a high degree of pitch saliency. The experimental design herein permits us to determine whether experience-dependent pitch representation in the brainstem is less susceptible to progressive degradation of the temporal regularity of iterated rippled noise (IRN). Brainstem responses were recorded from Chinese and English participants in response to IRN homologues of Mandarin Tone 2 (T2IRN). Six different iterations steps were utilized to systematically vary the degree of temporal regularity in the fine structure of the IRN stimuli to produce a pitch salience continuum ranging from low to high. Pitch-tracking accuracy and pitch strength were computed from the brainstem responses using autocorrelation algorithms. Analysis of variance of brainstem responses to T2IRN revealed that pitch-tracking accuracy is higher in the native tone language group (Chinese) relative to the non-tone language group (English) except for the three lowest steps along the continuum, and moreover, that pitch strength is greater in the Chinese group even in severely degraded stimuli for two of the six 40-ms sections of T2IRN that exhibit rapid changes in pitch. For these same two sections, exponential time constants for the stimulus continuum revealed that pitch strength emerges 2-3 times faster in the tone language than in the non-tone language group as a function of increasing pitch salience. These findings altogether suggest that experience-dependent brainstem mechanisms for pitch are especially sensitive to those dimensions of tonal contours that provide cues of high perceptual saliency in degraded as well as normal listening conditions. © 2009 Elsevier B.V. All rights reserved.

Publication Title

Brain Research

Share

COinS