Experience-dependent plasticity in pitch encoding: From brainstem to auditory cortex

Abstract

Linguistic and musical pitch provide an analytic window to evaluate how neural representations of important pitch attributes of a sound undergo transformation from early sensory to later cognitive stages of processing in the human brain, and how pitch-relevant experience shapes these representations. These pitch attributes are shaped differentially depending on their functional relevance to a listener. Neural encoding of pitch-relevant information is shaped by the perceptual salience of domain-specific features at subcortical (auditory brainstem) and cortical stages of processing. The emergence of a functional ear asymmetry in the neural encoding of pitch-relevant information at a lower sensory processing level supports the view that local and feedforward and feedback mechanisms are involved in pitch-relevant processing. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-induced enhancement of pitch representations at multiple levels of the auditory pathway. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Publication Title

NeuroReport

Share

COinS