Draft genome of the Marco Polo Sheep (Ovis ammon polii)

Abstract

Background: The Marco Polo Sheep (Ovis ammon polii), a subspecies of argali (Ovis ammon) that is distributed mainly in the Pamir Mountains, provides a mammalian model to study high altitude adaptation mechanisms. Due to over-hunting and subsistence poaching, as well as competition with livestock and habitat loss, O. ammon has been categorized as an endangered species on several lists. It can have fertile offspring with sheep. Hence, a high-quality reference genome of the Marco Polo Sheep will be very helpful in conservation genetics and even in exploiting useful genes in sheep breeding. Findings: A total of 1022.43 Gb of raw reads resulting from whole-genome sequencing of a Marco Polo Sheep were generated using an Illumina HiSeq2000 platform. The final genome assembly (2.71 Gb) has an N50 contig size of 30.7 Kb and a scaffold N50 of 5.49 Mb. The repeat sequences identified account for 46.72% of the genome, and 20 336 protein-coding genes were predicted from the masked genome. Phylogenetic analysis indicated a close relationship between Marco Polo Sheep and the domesticated sheep, and the time of their divergence was approximately 2.36 million years ago. We identified 271 expanded gene families and 168 putative positively selected genes in the Marco Polo Sheep lineage. Conclusions: We provide the first genome sequence and gene annotation for the Marco Polo Sheep. The availability of these resources will be of value in the future conservation of this endangered large mammal, for research into high altitude adaptation mechanisms, for reconstructing the evolutionary history of the Caprinae, and for the future conservation of the Marco Polo Sheep.

Publication Title

GigaScience

Share

COinS