Evaluation of Magnesium-Phosphate Particle Incorporation into Co-Electrospun Chitosan-Elastin Membranes for Skin Wound Healing

Abstract

Designing realistic quantum mechanical (QM) models of enzymes is dependent on reliably discerning and modeling residues, solvents, and cofactors important in crafting the active site microenvironment. Interatomic van der Waals contacts have previously demonstrated usefulness toward designing QM-models, but their measured values (and subsequent residue importance rankings) are expected to be influenceable by subtle changes in protein structure. Using chorismate mutase as a case study, this work examines the differences in ligand-residue interatomic contacts between an x-ray crystal structure and structures from a molecular dynamics simulation. Select structures are further analyzed using symmetry adapted perturbation theory to compute ab initio ligand-residue interaction energies. The findings of this study show that ligand-residue interatomic contacts measured for an x-ray crystal structure are not predictive of active site contacts from a sampling of molecular dynamics frames. In addition, the variability in interatomic contacts among structures is not correlated with variability in interaction energies. However, the results spotlight using interaction energies to characterize and rank residue importance in future computational enzymology workflows.

Publication Title

Marine Drugs

Share

COinS