Effect of benzo(a)pyrene on oxidative stress and inflammatory mediators in astrocytes and HIV-infected macrophages

Abstract

Background Benzo(a)pyrene (BaP), an important polycyclic aromatic hydrocarbons (PAH) component of cigarette/tobacco smoking, is known to cause adverse health effects and is responsible for various life-threatening conditions including cancer. However, it is not yet clear whether BaP contributes to the macrophage- and astrocyte-mediated inflammatory response. Methods We examined the acute (up to 72 h) effects of BaP on the expression of antioxidant enzymes (AOEs), cytokines/chemokines, and cytochromes P450 (CYP) enzymes in astrocytic cell lines, SVGA, and chronically HIV-infected U1 macrophage. The treated cells were examined for mRNA, protein levels of CYPs, AOEs superoxide dismutase-1 (SOD1) and catalase (CAT), cytokines/chemokines, using Western blot, multiplex ELISA, and reactive oxygen species (ROS) by flow cytometry analysis. Results Upon acute exposure, BaP (1 μM) showed a significant increase in the mRNA levels of CYPs (CYP1A1 and CYP1B1), and pro-inflammatory cytokine IL-1β in SVGA cells following BaP for 24, 48, and 72h. In addition, we observed a significant increase in the mRNA levels of SOD1 and CAT at 24h of BaP treatment. In contrast, BaP did not exert any change in the protein expression of AOEs and CYP enzymes. In U1 cells, however, we noticed an interesting increase in the levels of MCP-1 as well as a modest increase in TNFα, IL-8 and IL-1β levels observed at 72 h of BaP treatment but could not reach to statistically significant level. Conclusions Overall, these results suggest that BaP contributes in part to macrophage and astrocyte-mediated neuroinflammation by mainly inducing IL-1β and MCP-1 production, which is likely to occur with the involvement of CYP and/or oxidative stress pathways.

Publication Title

PLoS ONE

Share

COinS