Modeling Plant Development with M Systems

Abstract

Morphogenetic systems (M systems) have been recently introduced as a computational model aiming at a deeper understanding of morphogenetic phenomena such as growth, self-reproduction, homeostasis and self-healing of evolving systems. M systems hybridize principles common in membrane computing and abstract self-assembly. The model unfolds in a 3D (or generally, dD) space, growing structures that are self-assembled from generalized tiles using shape and location sensitive local rules. The environment provides mutually reacting atomic particles that contribute to growth control. Initial studies of M systems demonstrated their computational universality and efficiency, as well as their robustness to injuries through their self-healing capabilities. Here, we make a systematic comparison of their generativity power with Lindenmayer systems, the best known model of pattern and shape assembly.

Publication Title

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Share

COinS