Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy–Leray inequalities

Abstract

The purpose of this paper is twofold. First is the study of the nonexistence of positive solutions of the parabolic problem {∂u∂t=Δpu+V(x)up-1+λuqinΩ×(0,T),u(x,0)=u0(x)≥0inΩ,|∇u|p-2∂u∂ν=β|u|p-2uon∂Ω×(0,T),where Ω is a bounded domain in RN with smooth boundary ∂Ω, Δpu= div (| ∇ u| p-2∇ u) is the p-Laplacian of u, V∈Lloc1(Ω), β∈Lloc1(∂Ω), λ∈ R, the exponents p and q satisfy 1 < p< 2 , and q> 0. Then, we present some sharp Hardy and Leray type inequalities with remainder terms that provide us concrete potentials to use in the partial differential equation we are interested in.

Publication Title

Annali di Matematica Pura ed Applicata

Share

COinS