Gait biomechanics of a second generation unstable shoe
Abstract
The recent popularity of unstable shoes has sparked much interest in the efficacy of the shoe design. Anecdotal evidence suggests that earlier designs appear bulky and less aesthetically appealing for everyday use. The purpose of this study was to examine effects of a second generation unstable shoe on center of pressure (COP), ground reaction force (GRF), kinematics, and kinetics of the ankle joint during level walking at normal and fast speeds. In addition, findings were compared with results from the first generation shoe. Fourteen healthy males performed five successful level walking trials in four testing conditions: walking in unstable and control shoes at normal (1.3 m/s) and fast (1.8 m/s) speeds. The unstable shoe resulted in an increase in mediolateral COP displacement, first peak vertical GRF loading rate, braking GRF, ankle eversion range of motion (ROM), and inversion moment; as well as a decrease in anteroposterior COP displacement, second peak vertical GRF, ankle plantarflexion ROM, and dorsiflexion moment. Only minor differences were found between the shoe generations. Results of the generational comparisons suggest that the lower-profile second generation shoe may be as effective at achieving the desired unstable effects while promoting a smoother transition from heel contact through toe off compared with the first generation shoe.
Publication Title
Journal of Applied Biomechanics
Recommended Citation
Gardner, J., Zhang, S., Paquette, M., Milner, C., & Brock, E. (2014). Gait biomechanics of a second generation unstable shoe. Journal of Applied Biomechanics, 30 (4), 501-507. https://doi.org/10.1123/jab.2013-0039