Dynamic Wireless Charging Facility Location Problem for Battery Electric Vehicles under Electricity Constraint

Abstract

Despite the recent development in technology, Battery Electric Vehicle (BEV) pose several drawbacks including recharging time, limited range, and inadequate number of charging facilities. In an effort to address these drawbacks, Dynamic Wireless Charging (DWC) technology is gaining attention. DWC can be implemented by embedding the induction coil under a roadway pavement to dynamically charge the BEV in motion without a need to stop. This prompts an important question for infrastructure planning of BEVs: how to optimally locate DWC infrastructure in a road network. Planning for optimal DWC facility location needs to consider how BEV drivers will react to the newly implemented DWC in terms of route choice to reflect their unilateral utility minimization objective. Further complexities of DWC implementation include availability of zonal surplus electricity. In this paper, we propose a bi-level planning approach considering both the objectives of the planners and the drivers. The approach explicitly incorporates five elements: system-level social costs, travel patterns of individuals, trip completion assurance, zonal DWC implementation constraint due to energy availability from grid, and total budget availability from the public agency. The proposed framework is first demonstrated in a numerical experiment setting using Sioux Falls network. Then the framework is also implemented using city of Chicago sketch network to demonstrate its applicability to real-size networks. The numerical results using these two networks provide valuable insights for planners for developing an optimal DWC implementation plan.

Publication Title

Networks and Spatial Economics

Share

COinS