Reverse current pulse method to restore uniform concentration profiles in ion-selective membranes. 1. Galvanostatic pulse methods with decreased cycle time

Abstract

The applications of ion-selective electrodes (ISEs) have been broadened through the introduction of galvanostatic current pulse methods in potentiometric analysis. An important requirement in these applications is the restoration of the uniform equilibrium concentration profiles in the ISE membrane between each measurement. The simplest restoration method is zero-current relaxation, in which the membrane relaxes under open-circuit conditions in a diffusion-controlled process. This paper presents a novel restoration method using a reverse current pulse. An analytic model for this restoration method is derived to predict the concentration profiles inside ISE membranes following galvanostatic current pulses. This model allows the calculation of the voltage transients as themembrane voltage relaxes back toward its zero-current equilibrium value. The predicted concentration profiles and voltage transients are confirmed using spectroelectrochemical microscopy (SpECM). The reverse current restoration method described in this paper reduces the voltage drift and voltage error by 10-100 times compared to the zero-current restoration method. Therefore, this new method provides faster and more reproducible voltage measurements in most chronopotentiometric ISE applications, such as improving the detection limit and determining concentrations and diffusion coefficients of membrane species. One limitation of the reverse current restoration method is that it cannot be used in a few applications that require background electrolyte loaded membranes without excess of lipophilic cation exchanger. © 2009 American Chemical Society.

Publication Title

Analytical Chemistry

Share

COinS