Rovibrational Quantum Chemical Treatment of Inorganic and Organometallic Astrochemicals

Abstract

ConspectusOur two groups have both independently and collaboratively been pushing quantum-chemical techniques to produce highly accurate predictions of anharmonic vibrational frequencies and spectroscopic constants for molecules containing atoms outside of the typical upper p block. Methodologies employ composite approaches, relying on various levels of coupled cluster theory - most often at the singles, doubles, and perturbative triples level - and quartic force field constructions of the potential portion of the intramolecular Watson Hamiltonian. Such methods are known to perform well for organic species, and we have extended this to molecules containing atoms outside of this realm.One notable atom that has received much attention in this application is magnesium. Mg is the second-most-abundant element in the Earth's mantle, and while molecules containing this element are among the confirmed astrochemicals, its further atomic abundance in the galaxy implies that many more molecules (both purely inorganic and organometallic) containing element 12 exist in astrophysical regions in chemical sizes between those of atoms and dust-sized nanocrystals. Our approach discussed herein is producing quality benchmarks and predicting novel data for magnesium-bearing molecules.The story is similar for Al and Si, which are also notably abundant in both rocky bodies and the universe at large. While Na, Sc, and Cu may not be as abundant as Mg, Al, and Si, molecules containing Na and transition metals have also previously been reported to be detected beyond the Earth. Consequently, the need to produce spectral reference data for molecules containing such atoms is growing. While several experimental groups (including, notably, the groups in Arizona, Boston, and France/Spain) have clearly led the way in detection of inorganic/organometallic molecules in space, computational support and even rational design can provide novel avenues for the detection of molecules containing atoms not typically studied in most laboratories. The application of quantum chemistry to other elements beyond carbon and its cronies at the top right of the periodic table promises a better understanding of the observable universe. It will also provide novel and fundamental chemical insights pushing the "central science"into new molecular territory.

Publication Title

Accounts of Chemical Research

Share

COinS