Actinin-4 in keratinocytes regulates motility via an effect on lamellipodia stability and matrix adhesions
Abstract
During wound repair, epidermal cells at the edge of an injury establish front-rear polarity through orchestrated changes in their cytoskeleton and adhesion structures. The polarity and directed migration of such cells is determined by the assembly, extension, and stabilization of a lamellipodium. Actinin- 4 associates with lamellipodia and has been implicated in regulating lamellipodial structure, function and assembly. To study the functions of actinin-4 in human keratinocytes, we used shRNA to generate knockdown cells and compared their motility behavior and matrix adhesion assembly to scrambled shRNA treated control keratinocytes. Actinin-4 knockdown keratinocytes lack polarity, assemble multiple lamellipodia with a 2* increased area over controls, display reduced activity of the actin remodeling protein cofilin, and fail to migrate in a directional manner. This motility defect is rescued by plating knockdown cells on preformed laminin-332 matrix. In actinin-4-knockdown keratinocytes, focal contact area is increased by 25%, and hemidesmosome proteins are mislocalized. Specifically, α6β4 integrin localizes to large lamellipodial extensions, displays reduced dynamics, and fails to recruit its bullous pemphigoid antigen binding partners. Together, our data indicate a role for actinin-4 in regulating the steering mechanism of keratinocytes via profound effects on their matrix adhesion sites. © FASEB.
Publication Title
FASEB Journal
Recommended Citation
Hamill, K., Hopkinson, S., Skalli, O., & Jones, J. (2013). Actinin-4 in keratinocytes regulates motility via an effect on lamellipodia stability and matrix adhesions. FASEB Journal, 27 (2), 546-556. https://doi.org/10.1096/fj.12-217406