The correlation-consistent composite approach: Application to the G3/99 test set
Abstract
The correlation-consistent composite approach (ccCA), an ab initio composite technique for computing atomic and molecular energies, recently has been shown to successfully reproduce experimental data for a number of systems. The ccCA is applied to the G3/99 test set, which includes 223 enthalpies of formation, 88 adiabatic ionization potentials, 58 adiabatic electron affinities, and 8 adiabatic proton affinities. Improvements on the original ccCA formalism include replacing the small basis set quadratic configuration interaction computation with a coupled cluster computation, employing a correction for scalar relativistic effects, utilizing the tight-d forms of the second-row correlation-consistent basis sets, and revisiting the basis set chosen for geometry optimization. With two types of complete basis set extrapolation of MP2 energies, ccCA results in an almost zero mean deviation for the G3/99 set (with a best value of -0.10 kcal mol -1), and a 0.96 kcal mol -1 mean absolute deviation, which is equivalent to the accuracy of the G3X model chemistry. There are no optimized or empirical parameters included in the computation of ccCA energies. Except for a few systems to be discussed, ccCA performs as well as or better than Gn methods for most systems containing first-row atoms, while for systems containing second-row atoms. ccCA is an improvement over Gn model chemistries. © 2006 American Institute of Physics.
Publication Title
Journal of Chemical Physics
Recommended Citation
DeYonker, N., Grimes, T., Yockel, S., Dinescu, A., Mintz, B., Cundari, T., & Wilson, A. (2006). The correlation-consistent composite approach: Application to the G3/99 test set. Journal of Chemical Physics, 125 (10) https://doi.org/10.1063/1.2236116