Cascading costs of reproduction in female house wrens induced to lay larger clutches

Abstract

In many species, females produce fewer offspring than they are capable of rearing, possibly because increases in current reproductive effort come at the expense of a female's own survival and future reproduction. To test this, we induced female house wrens (Troglodytes aedon) to lay more eggs than they normally would and assessed the potential costs of increasing cumulative investment in the three main components of the avian breeding cycle - egg laying, incubation and nestling provisioning. Females with increased clutch sizes reared more offspring in the first brood than controls, but fledged a lower proportion of nestlings. Moreover, nestlings of experimental females were lighter than those of control females as brood size and prefledging mass were negatively correlated. In second broods of the season, when females were not manipulated, experimental females laid the same number of eggs as controls, but experienced an intraseasonal cost through reduced hatchling survival and a lower number of young fledged. Offspring of control and experimental females were equally likely to recruit to the breeding population, although control females produced more recruits per egg laid. The reproductive success of recruits from broods of experimental and control females did not differ. The manipulation also induced interseasonal costs to future reproduction, as experimental females had lower fecundity than controls when breeding at least 2 years after having their reproductive effort experimentally increased. Finally, females producing the modal clutch size of seven eggs in their first broods had the highest lifetime number of fledglings.

Publication Title

Journal of Evolutionary Biology

Share

COinS