Randomized communication vs. partition number
Abstract
We show that randomized communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal randomized lower bounds for the Clique vs. Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS 2015). One of our main technical contributions states that information complexity when the cost is measured with respect to only 1-inputs (or only 0-inputs) is essentially equivalent to information complexity with respect to all inputs.
Publication Title
Leibniz International Proceedings in Informatics, LIPIcs
Recommended Citation
Göös, M., Jayram, T., Pitassi, T., & Watson, T. (2017). Randomized communication vs. partition number. Leibniz International Proceedings in Informatics, LIPIcs, 80 https://doi.org/10.4230/LIPIcs.ICALP.2017.52