Secure and Verifiable Inference in Deep Neural Networks
Abstract
Outsourced inference service has enormously promoted the popularity of deep learning, and helped users to customize a range of personalized applications. However, it also entails a variety of security and privacy issues brought by untrusted service providers. Particularly, a malicious adversary may violate user privacy during the inference process, or worse, return incorrect results to the client through compromising the integrity of the outsourced model. To address these problems, we propose SecureDL to protect the model's integrity and user's privacy in Deep Neural Networks (DNNs) inference process. In SecureDL, we first transform complicated non-linear activation functions of DNNs to low-degree polynomials. Then, we give a novel method to generate sensitive-samples, which can verify the integrity of a model's parameters outsourced to the server with high accuracy. Finally, We exploit Leveled Homomorphic Encryption (LHE) to achieve the privacy-preserving inference. We shown that our sensitive-samples are indeed very sensitive to model changes, such that even a small change in parameters can be reflected in the model outputs. Based on the experiments conducted on real data and different types of attacks, we demonstrate the superior performance of SecureDL in terms of detection accuracy, inference accuracy, computation, and communication overheads.
Publication Title
ACM International Conference Proceeding Series
Recommended Citation
Xu, G., Li, H., Ren, H., Sun, J., Xu, S., & Ning, J. (2020). Secure and Verifiable Inference in Deep Neural Networks. ACM International Conference Proceeding Series, 784-797. https://doi.org/10.1145/3427228.3427232