Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index
Abstract
Soil salinization is an extremely serious land degradation problem in arid and semi-arid regions that hinders the sustainable development of agriculture and food security. Information and research on soil salinity using remote sensing (RS) technology provide a quick and accurate assessment and solutions to address this problem. This study aims to compare the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction and exploration of the potential application of derivatives to RS prediction of salinized soils. It explores the ability of derivatives to be used in the Landsat-8 OLI and Sentinel-2A MSI multispectral data, and it was used as a data source as well as to address the adaptability of salinity prediction on a regional scale. The two-dimensional (2D) and three-dimensional (3D) optimal spectral indices are used to screen the bands that are most sensitive to soil salinity (0–10 cm), and RS data and topographic factors are combined with machine learning to construct a comprehensive soil salinity estimation model based on gray correlation analysis. The results are as follows: (1) The optimal spectral index (2D, 3D) can effectively consider possible combinations of the bands between the interaction effects and responding to sensitive bands of soil properties to circumvent the problem of applicability of spectral indices in different regions; (2) Both the Landsat-8 OLI and Sentinel-2A MSI multispectral RS data sources, after the first-order derivative techniques are all processed, show improvements in the prediction accuracy of the model; (3) The best performance/accuracy of the predictive model is for sentinel data under first-order derivatives. This study compared the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction in finding the potential application of derivatives to RS prediction of salinized soils, with the results providing some theoretical basis and technical guidance for salinized soil prediction and environmental management planning.
Publication Title
Science of the Total Environment
Recommended Citation
Wang, Z., Zhang, F., Zhang, X., Chan, N., Kung, H., Ariken, M., Zhou, X., & Wang, Y. (2021). Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index. Science of the Total Environment, 775 https://doi.org/10.1016/j.scitotenv.2021.145807