A note on the Harris-Kesten Theorem
Abstract
A short proof of the Harris-Kesten result that the critical probability for bond percolation in the planar square lattice is 1/2 was given in [B. Bollobás, O.M. Riordan, A short proof of the Harris-Kesten Theorem, Bull. London Math. Soc. 38 (2006) 470-484], using a sharp-threshold result of Friedgut and Kalai. Here we point out that a key part of this proof may be replaced by an argument of Russo [L. Russo, An approximate zero-one law, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 61 (1982) 129-139] from 1982, using his approximate zero-one law in place of the Friedgut-Kalai result. Russo's paper gave a new proof of the Harris-Kesten Theorem that seems to have received little attention. © 2007.
Publication Title
European Journal of Combinatorics
Recommended Citation
Bollobás, B., & Riordan, O. (2007). A note on the Harris-Kesten Theorem. European Journal of Combinatorics, 28 (6), 1720-1723. https://doi.org/10.1016/j.ejc.2006.05.022