"Asymptotic normality of the size of the giant component in a random hy" by Béla Bollobás and Oliver Riordan
 

Asymptotic normality of the size of the giant component in a random hypergraph

Abstract

Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-Löf, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p) above the phase transition. Here we show that the same method applies to the analogous model of random k -uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime. © 2012 Wiley Periodicals, Inc.

Publication Title

Random Structures and Algorithms

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 21
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 9
see details

Share

COinS