"Long-time behavior of quasilinear thermoelastic Kirchhoff–Love plates " by Irena Lasiecka, Michael Pokojovy et al.
 

Long-time behavior of quasilinear thermoelastic Kirchhoff–Love plates with second sound

Abstract

We consider an initial–boundary-value problem for a thermoelastic Kirchhoff & Love plate, thermally insulated and simply supported on the boundary, incorporating rotational inertia and a quasilinear hypoelastic response, while the heat effects are modeled using the hyperbolic Maxwell–Cattaneo–Vernotte law giving rise to a ‘second sound’ effect. We study the local well-posedness of the resulting quasilinear mixed-order hyperbolic system in a suitable solution class of smooth functions mapping into Sobolev Hk-spaces. Exploiting the sole source of energy dissipation entering the system through the hyperbolic heat flux moment, provided the initial data are small – not in the full topology of our solution class, but in a lower topology corresponding to weak solutions we prove a nonlinear stabilizability estimate furnishing global existence & uniqueness and exponential decay of classical solutions.

Publication Title

Nonlinear Analysis, Theory, Methods and Applications

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 13
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 1
see details

Share

COinS