Metric dimension for random graphs
Abstract
The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).
Publication Title
Electronic Journal of Combinatorics
Recommended Citation
Bollobás, B., Mitsche, D., & Prałat, P. (2013). Metric dimension for random graphs. Electronic Journal of Combinatorics, 20 (4) https://doi.org/10.37236/2639
COinS