On generalised minimal domination parameters for paths
Abstract
A subset X of vertices of a graph is a k-minimal P-set if X has property P, but the removal of any l vertices from X, where l ≤k, followed by the addition of any (l - 1) vertices destroys the property P. We note that 1–minimality is the usual minimality concept. In this paper we determine Гk(Pn), the largest cardinality of a k-minimal dominating set of the n-vertex path Pn. We also prove for any n-vertex graph G, Г2(G)γ(G) ≤n and finally a 'Gallai-type' theorem for k-minimal parameters is established. © 1991, Elsevier Inc. All rights reserved.
Publication Title
Annals of Discrete Mathematics
Recommended Citation
Bollobás, B., Cockayne, E., & Mynhardt, C. (1991). On generalised minimal domination parameters for paths. Annals of Discrete Mathematics, 48 (C), 89-97. https://doi.org/10.1016/S0167-5060(08)71041-0