"On the diameter and radius of randon subgraphs of the cube" by B. Bollobás, Y. Kohayakawa et al.
 

On the diameter and radius of randon subgraphs of the cube

Abstract

The n‐dimensional cube Qn is the graph whose vertices are the subsets of {1,…n}, with two vertices adjacent if and only if their symmetric difference is a singleton. Clearly Qn has diameter and radious n. Write M = n2n‐1 = e(Qn) for the size of Qn. Let Q = (Qt)oM be a random Qn‐process. Thus Qt is a spanning subgraph of Qn of size t, and Qt is obtained from Qt–1 by the random addition of an edge of Qn not in Qt–1, Let t(k) = τ(Q;δ⩾k) be the hitting time of the property of having minimal degree at least k. We show that the diameter dt = diam (Qt) of Qt in almost every Q̃ behaves as follows: dt starts infinite and is first finite at time t1, it equals n + 1 for t1 ⩽ t2 and dt, = n for t ⩾ t2. We also show that the radius of Qt, is first finite for t = t1, when it assumes the value n. These results are deduced from detailed theorems concerning the diameter and radius of the almost surely unique largest component of Qt, for t = Ω(M). © 1994 John Wiley & Sons, Inc. Copyright © 1994 Wiley Periodicals, Inc., A Wiley Company

Publication Title

Random Structures & Algorithms

Share

COinS