Principles of Stochastic Caputo Fractional Calculus with Fractional Approximation of Stochastic Processes
Abstract
Here we consider and study very general stochastic positive linear operators induced by general positive linear operators that are acting on continuous functions. These are acting on the space of real fractionally differentiable stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related fractional stochastic Shisha-Mond type inequalities of Lq-type (Formula Presented) and corresponding fractional stochastic Korovkin type theorems. These are regarding the stochastic q-mean fractional convergence of a sequence of stochastic positive linear operators to the stochastic unit operator for various cases. All convergences are produced with rates and are given via the fractional stochastic inequalities involving the stochastic modulus of continuity of the (Formula Presented)th fractional derivatives of the engaged stochastic process, (Formula Presented). The impressive fact is that the basic real Korovkin test functions assumptions are enough for the conclusions of our fractional stochastic Korovkin theory. We give applications to stochastic Bernstein operators. See also[10].
Publication Title
Studies in Systems, Decision and Control
Recommended Citation
Anastassiou, G. (2021). Principles of Stochastic Caputo Fractional Calculus with Fractional Approximation of Stochastic Processes. Studies in Systems, Decision and Control, 305, 283-321. https://doi.org/10.1007/978-3-030-56962-4_14