"Scattering theory for higher order equations" by Douglas Pickett and J. A. Goldstein
 

Scattering theory for higher order equations

Abstract

This paper deals with scattering theory for equations of the form where M = 2N with N a positive integer, and {Bk} are M commuting, skew-adjoint operators on a Hilbert space H. It has been shown [3] that equations of this form may be written f where A is a skew-adjoint, M by M matrix of operators on the Hilbert space HM. This matrix will be shown to be unitarily equivalent to the M x M diagonal matrix with the operators {Bk} on the diagonal. If {Bkn}, n = 0, 1, are two families of commuting, skew-adjoint operators on H, let An, n = 0, 1, be the matrices of operators on HM corresponding to { Bkn}, n = 0, 1. It will be shown that the wave operats Ω ±(iB1k, iB0k) on H exist (and are complete) for k= 1, 2, …, M, if and only if the wave operators Ω± (iA1, iA0) exist (and are complete). This result will be applied to the equations of linear elasticity. © 1990, Khayyam Publishing. All rights reserved.

Publication Title

Differential and Integral Equations

This document is currently not available here.

Share

COinS