"Sets of k-recurrence but not (k + 1)-recurrence" by Nikos Frantzikinakis, Emmanuel Lesigne et al.
 

Sets of k-recurrence but not (k + 1)-recurrence

Abstract

For every k ∈ ℕ, we produce a set of integers which is k-recurrent but not (k + 1)-recurrent. This extends a result of Furstenberg who produced a 1-recurrent set which is not 2-recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi's theorem.

Publication Title

Annales de l'Institut Fourier

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 14
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 2
see details

Share

COinS