Microbial Ecology of Snow Reveals Taxa-Specific Biogeographical Structure

Abstract

Snows that persist late into the growing season become colonized with numerous metabolically active microorganisms, yet underlying mechanisms of community assembly and dispersal remain poorly known. We investigated (Illumina MiSeq) snow-borne bacterial, fungal, and algal communities across a latitudinal gradient in Fennoscandia and inter-continental distribution between northern Europe and North America. Our data indicate that bacterial communities are ubiquitous regionally (across Fennoscandia), whereas fungal communities are regionally heterogeneous. Both fungi and bacteria are biogeographically heterogeneous inter-continentally. Snow algae, generally thought to occur in colorful algae blooms (red, green, or yellow) on the snow surface, are molecularly described here as an important component of snows even in absence of visible algal growth. This suggests that snow algae are a previously underestimated major biological component of visually uncolonized snows. In contrast to fungi and bacteria, algae exhibit no discernible inter-continental or regional community structure and exhibit little endemism. These results indicate that global and regional snow microbial communities and their distributions may be dictated by a combination of size-limited propagule dispersal potential and restrictions (bacteria and fungi) and homogenization of ecologically specialized taxa (snow algae) across the globe. These results are among the first to compare inter-continental snow microbial communities and highlight how poorly understood microbial communities in these threatened ephemeral ecosystems are.

Publication Title

Microbial Ecology

Share

COinS