Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine

Abstract

Microbial ecology is an integral part of an agricultural ecosystem and influences the quality of agricultural commodities. Microbial activity influences grapevine health and crop production, conversion of sugar to ethanol during fermentation, thus forming wine aroma and flavour. There are regionally differentiated microbial patterns in grapevines and must but how microbial patterns contribute to wine regional distinctiveness (terroir) at small scale (<100 km) is not well defined. Here we characterise fungal communities, yeast populations, and Saccharomyces cerevisiae populations during spontaneous fermentation using metagenomics and population genetics to investigate microbial distribution and fungal contributions to the resultant wine. We found differentiation of fungi, yeasts, and S. cerevisiae between geographic origins (estate/vineyard), with influences from the grape variety. Growth and dominance of S. cerevisiae during fermentation reshaped the fungal community and showed geographic structure at the strain level. Associations between fungal microbiota diversity and wine chemicals suggest that S. cerevisiae plays a primary role in determining wine aroma profiles at a sub-regional scale. The geographic distribution at scales of less than 12 km supports that differential microbial communities, including the dominant fermentative yeast S. cerevisiae can be distinct in a local setting. These findings provide further evidence for microbial contributions to wine terroir, and perspectives for sustainable agricultural practices to maintain microbial diversity and optimise fermentation function to craft beverage quality.

Publication Title

International Journal of Food Microbiology

Share

COinS