Reduced leptin concentrations are permissive for display of torpor in Siberian hamsters

Abstract

A photoperiod with a short photophase induces a winterlike phenotype in Siberian hamsters that includes a progressive decrease in food intake and body mass and reproductive organ regression, as well as reversible hypothermia in the form of short-duration torpor. Torpor substantially reduces energy utilization and is not initiated until body mass, fat stores, and serum leptin concentrations are at their nadir. Because photoperiod-dependent torpor is delayed until fat reserves are lowest, leptin concentrations may be a permissive factor for torpor onset. This conjecture was tested by implanting osmotic minipumps into Siberian hamsters manifesting spontaneous torpor; the animals received a constant release of leptin or vehicle for 14 days. Exogenous leptin treatment eliminated torpor in a significant proportion of treated hamsters, whereas treatment with the vehicle did not. Similarly, endogenous serum leptin concentrations were markedly reduced in all animals undergoing daily torpor. Although simply reducing leptin concentrations below a threshold value is not sufficient for torpor initiation, reduced leptin concentrations nevertheless appear necessary for its occurrence. It is proposed that drastically reduced leptin concentrations provide a "starvation signal" to an as yet unidentified central mechanism mediating torpor initiation.

Publication Title

American Journal of Physiology - Regulatory Integrative and Comparative Physiology

Share

COinS