Electronic Theses and Dissertations
Identifier
6432
Date
2019
Document Type
Thesis
Degree Name
Master of Science
Major
Mechanical Engineering
Committee Chair
Ali Fatemi
Committee Member
Gladius Lewis
Committee Member
Steve Wayne
Abstract
Additive manufacturing (AM) has become a very popular topic recently due to its many advantages including short build cycles, convenience of customozation, and most importantly the ability to build components with complex geometry. However, the surface condition of additive manufactured components is not always satisfactory, particularly with respect to fatigue performance. This is because the as-built surface tends to be rough and post surface treatments or processes such as machining and polishing may not be applicable to all AM parts. On the other hand, since many components are under cyclic loading consisting of normal and shear stress, multiaxial fatigue behavior is one of the most important aspects to evaluate. This paper evaluates the surface roughness effect on fatigue behaviors of Ti-6Al-4V allloy samples additively manufactured by laser based powder bed fusion method (L-PBF). Fully reversed axial, torsional, and combined axial-torsion fatigue tests were conducted on specimens with different surface conditions and with different post heat treatments (annealed and HIP). Fatigue life predictions were made using linear elastic fracture mechanic with satisfactory results, as compared to experimental results.
Library Comment
Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.
Recommended Citation
Zhang, Jingzhe, "Surface Roughness Effect on Multiaxial Fatigue Behavior of Additive Manufactured Metals and Its Modeling" (2019). Electronic Theses and Dissertations. 2000.
https://digitalcommons.memphis.edu/etd/2000
Comments
Data is provided by the student.