Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium

Abstract

Chitosan, a derivative of the bio-polysaccharide chitin, has shown promise as a bioactive material for implant, tissue engineering and drug-delivery applications. The aim of this study was to evaluate the contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Rough ground titanium (Ti) coupons were solution cast and bonded to 91.2% de-acetylated chitosan (1 wt% chitosan in 0.2% acetic acid) coatings via silane reactions. Non-coated Ti was used as controls. Samples were sterilized by ethylene oxide gas prior to experiments. Contact angles on all surfaces were measured using water. 5 × 104 cells/ml of ATCC CRL 1486 human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, were used for the cell attachment study. SEM evaluations were performed on cells attached to all surfaces. Contact angles and cell attachment on all surfaces were statistically analyzed using ANOVA. The chitosan-coated surfaces (76.4 ± 5.1°) exhibited a significantly greater contact angle compared to control Ti surfaces (32.2 ± 6.1°). Similarly, chitosan-coated surfaces exhibited significantly greater (P < 0.001) albumin adsorption, fibronectin adsorption and cell attachment, as compared to the control Ti surfaces. Coating chitosan on Ti surfaces decreased the wettability of the Ti, but increased protein adsorption and cell attachment. Increased protein absorption and cell attachment on the chitosan-coated Ti may be of benefit in enhancing osseointegration of implant devices.

Publication Title

Journal of Biomaterials Science, Polymer Edition

Share

COinS