A software tool for generating non-crosshybridizing libraries of DNA oligonucleotides
Abstract
Under an all or nothing hybridization model, the problem of finding a library of non-crosshybridizing DNA oligonucleotides is shown to be equivalent to finding an independent set of vertices in a graph. Individual oligonucleotides or Watson-Crick pairs are represented as vertices. Indicating a hybridization, an edge is placed between vertices (oligonucleotides or pairs) if the minimum free energy of hybridization, according to the nearest-neighbor model of duplex thermal stability, is less than some threshold value. Using this equivalence, an algorithm is implemented to find maximal libraries. Sequence designs were generated for a test of a modified PCR protocol. The results indicated that the designed structures formed as planned, and that there was little to no secondary structure present in the single-strands. In addition, simulations to find libraries of 10-mers and 20-mers were done, and the base composition of the non-crosshybridizing libraries was found to be 2/3 A-T and 1/3 G-C under high salt conditions, and closer to uniform for lower salt concentrations. © Springer-Verlag Berlin Heidelberg 2003.
Publication Title
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Recommended Citation
Deaton, R., Chen, J., Bi, H., & Rose, J. (2003). A software tool for generating non-crosshybridizing libraries of DNA oligonucleotides. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 252-261. https://doi.org/10.1007/3-540-36440-4_22