Influence of loading cycle profile and frequency on a biomechanical parameter of a model of a balloon kyphoplasty-augmented lumbar spine segment: A finite element analysis study
Abstract
For patients who are suffering debilitating and persistent pain due to vertebral compression fracture(s) and for whom conservative therapies have not provided relief, balloon kyphoplasty (BKP) is used as a surgical option. There are only a very few literature reports on the use of the finite element analysis (FEA) method to obtain biomechanical parameters of models of spine segments that include BKP augmentation at a given level. In each of these studies, the applied loading used was quasi-static. During normal activities of daily living, the patient's spine would be subject to dynamically-applied loading. Thus, the question of the influence of the characteristics of a dynamically-applied loading cycle on biomechanical parameters of a spine that includes BKP-augmented segment(s) is germane; however, a study of this issue is lacking. We investigated this issue in the present FEA work, with the spine segment model being the L1-L3 motion segment units (MSUs) (a segment that is commonly augmented using BKP) and prophylactic BKP simulated at L2. The dynamic load was the compressive load-versus-time cycle to which the L3-L4 MSU is subjected during gait. Four cases of the cycle were considered, corresponding to slow-, normal-, fast- and very fast-paced gait. The loading cycle was applied to the superior surface of L1 while the inferior surface of L3 was fully constrained. It was found that (1) the global mean von Mises stress during the loading cycle (σVMG), in each tissue in the model increased in going from a slow-paced gait cycle to a very fast-paced gait cycle; and (2) for the slow-paced gait cycle, with increase in frequency of the cycle, f (1≤f≤3 Hz), σVMG in each of these tissues increased. Potential uses of the present findings are identified. © 2010 - IOS Press and the authors. All rights reserved.
Publication Title
Bio-Medical Materials and Engineering
Recommended Citation
Li, Y., & Lewis, G. (2010). Influence of loading cycle profile and frequency on a biomechanical parameter of a model of a balloon kyphoplasty-augmented lumbar spine segment: A finite element analysis study. Bio-Medical Materials and Engineering, 20 (6), 349-359. https://doi.org/10.3233/BME-2010-0648